

Exploring Metacognitive Monitoring in Kindergarten: Observing Information-Seeking Behaviors in Mother–Child Reminiscing and Deliberate Memory Tasks

Olivia K. Cook¹, Catherine N. Ricci¹, Miranda L. Denham¹, Keadija C. Wiley¹, Peter A. Ornstein² and Jennifer L. Coffman¹ University of North Carolina at Greensboro¹, University of North Carolina at Chapel Hill²

INTRODUCTION

A rich literature has documented how the use and effectiveness of appropriate strategies for remembering improve across the elementary school years (Ornstein, Haden, & San Souci, 2008).

of NORTH CAROLINA

at CHAPEL HILL

- Notably, the association between deliberate strategy use and recall is not strong until first grade (Schneider, 2011). This may be due, in part, to differences in individual-level factors such as metacognition (Blair & Diamond, 2008; Kuhn, 1999).
- In younger children, *information-seeking behaviors*, such as asking questions, have been examined as components of *metacognitive monitoring*, or children's detection of a comprehension or compliance issue when presented with an ambiguous goal (Revelle et al., 1985; Flavell et al., 1981).
- Although children enter formal school with considerable variability in metacognitive skills (Roebers, 2014; Schneider, 2015), limited research has focused on associations between metacognition and the development of children's deliberate memory skills over time.
- Therefore, the following study aims to build upon recent work linking reminiscing conversations to deliberate memory outcomes (Langley et al., 2017) by examining linkages between (a) parent and child elaborations, (b) children's information-seeking behaviors in two contexts, and (c) children's deliberate memory skills.

AIMS OF THE STUDY

- To characterize parent and child contributions in reminiscing conversations, specifically elaborations and information-seeking memory questions posed by children.
- To explore information-seeking behaviors in an ambiguous goal task.
- To examine linkages between parent and child elaborations, informationseeking behaviors, and deliberate strategy use over the kindergarten year.

METHODS

- Data for this study were drawn from an ongoing longitudinal study of children's memory and cognitive skills as they transition into elementary school.
- Child-, home- and school-level measures were collected across the kindergarten year.
- Continuing data collection will allow for multi-level assessments through the beginning of the second grade.

PARTICIPANTS

Participants were drawn from 5 schools and included 96 kindergarteners:

- 42 Males, 54 Females
- Age Range: 4.93 to 6.47 years

• White Black or African American Asian/Pacific Islander Multiracial Missing

	MEASURES	WITHIN AN	D ACR(DSS TASK	K RESULT	ſS
Information	n-Seeking in Parent–Child Conversations	Characterizing Pare	nt–Child	Reminiscing	g Conversati	ons
• Parent-child dyads	took part in the Mother–Child Reminiscing Task	Figure 1. Samp	le of Coding	Parent–Child R	eminiscing	
(Reese et al., 1993)	; parents were asked to discuss two novel, shared, one-	Transcription		Codes		
 Conversations were 	e audio-recorded, transcribed, and then coded using a	P: We ate, did you see anything Cinderella's castle at night time	; at ??	Confirmation question ela	on; General me aboration	emory
• Particular attention	was paid to both existing measures of parent and child	C: Fireworks and Tinkerbell!		Memory El	aboration x2	
contributions to cor memory questions:	nversations, such as <i>elaborations</i> , but also to children's an indicator of information-seeking behaviors.	P: What did Tinkerbell do?		General me elaboration	mory question	1
Parent Codes	Definition	C: She flew over Cinderella's ca	astle!	Memory ela	aboration	
Elaborations	<i>Utterances</i> that provide additional or new information about the event under discussion or <i>questions</i> that	P: And what did she do? Did sh up? That was super fun, wasn't	e light it it?	General me elaboration	mory questior ; Yes-no elabo	n pration x2
	either ask the child for new information or to confirm	C: How did she light it up?		Memory Qu	uestion	
	or deny a piece of memory information	P: With her little wand.		Statement e	laboration	
Child Codes	Definition	Descripti	ve Statisti	ics by Const	ruct	
Memory Elaboration	Children's utterances that provide additional or new information about the event under discussion	Information-Seel	king in Pare	ent–Child Coi	nversations	
Memory Question	Children's "open-ended" memory questions asking	Variable	Min	Max	Mean	SD
	the parent to provide information	Parent Elaborations	7.5	119	38.90	20.73
Information-Seeking During a Task with an Ambiguous Goal		Child Memory Elaborations	2	84	24.52	14.76
Children took part i	n an Object Memory Task	Child Memory Questions	0	3	.60	.78
(OBJ; Baker-Ward	et al., 1984) in which they were	Information-Se	eking Duri	ng an Ambigi	lous Goal	
asked to "work to re	emember" as many objects as	Variable	Min	Max	Mean	SD
how to do so, during resulted in a variety	g a 2-minute study period. This of behaviors – as the best way	Frequency of Information- Seeking	0	3	0.22	0.55
to achieve this goal	was intentionally ambiguous.	Latency to Seek	5	126	109.76	33.30
Indicator	Examples	Note: Latency to Seek Informati	ion is rever	rse scored in 1	that a smaller o	score
Information-Seeking	The number of times a child asked the research	indicates it took the child fewer metacognitive monitoring.	seconds to	seek informa	ition, exhibitir	ig greater
Latency to Seek	The length of time in seconds it takes to seek	De	liberate St	rategy Use		
Information (sec)	information for the first time	Variable	Min	Max	Mean	SD
	Deliberate Memory Skills	Fall Spontaneous Sorting	23	.78	21	.11
• Children took part i	n the Free Recall Task with Organizational Training	Fall Generalization Sorting	23	1	.03	.47
(Moely et al., 1992)	; children were asked to remember 16 line drawings	Winter Spontaneous Sorting	23	1	.05	.50
(measuring spontan	eous sorting), followed by a training trial in which they	Spring Spontaneous Sorting	23	1	.10	.53
were instructed in c	ategorical organization, and finishing with a	Correlations	Between	Predictor V	ariables	
advantage of this st	rategic instruction.		1.	2.	3.	4.
• The Adjusted Ratio	of Clustering (ARC) measure (Roenker, Thompson, &	1. Parents' Elaborations	-			
Brown, 1971) was u measure ranges from	used to characterize children's sorting during study; the n -1 (below chance) to 0 (chance) to 1 (perfect	2. Children's Elaborations	./3	- つ /**		
categorical sorting a	and clustering).	3. Children's Memory Questions	.43	.34	- 24+	
Category	Line Drawings	4. Into-Seeking Freq. on OBJ	.13	.05	.24	-

	MEASURES	WITHIN AN	D ACRO	DSS TASK	RESULT	ſS
Information	1-Seeking in Parent–Child Conversations	Characterizing Pare	nt–Child	Reminiscing	<mark>, Conversati</mark>	ons
• Parent-child dyads	took part in the Mother–Child Reminiscing Task	Figure 1. Samp	le of Coding	Parent–Child R	eminiscing	
(Reese et al., 1993)	; parents were asked to discuss two novel, shared, one-	Transcription		Codes		
Conversations were	e audio-recorded, transcribed, and then coded using a	P: We ate, did you see anything Cinderella's castle at night time	; at ?	Confirmation question ela	on; General mo	emory
Particular attention	was paid to both existing measures of parent and child	C: Fireworks and Tinkerbell!		Memory Ela	aboration x2	
contributions to con memory questions:	nversations, such as <i>elaborations</i> , but also to children's an indicator of information-seeking behaviors.	P: What did Tinkerbell do?		General me elaboration	mory question	1
Parent Codes	Definition	C: She flew over Cinderella's ca	astle!	Memory ela	aboration	
Elaborations	<i>Utterances</i> that provide additional or new information about the event under discussion or <i>questions</i> that	P: And what did she do? Did sh up? That was super fun, wasn't	e light it it?	General me elaboration;	mory question Yes-no elabo	n pration x2
	either ask the child for new information or to confirm	C: How did she light it up?		Memory Qu	uestion	
	or deny a piece of memory information	P: With her little wand.		Statement e	laboration	
Child Codes	Definition	Descriptiv	ve Statisti	ics by Const	ruct	
Memory Elaboration	children's utterances that provide additional or new information about the event under discussion	Information-Seek	king in Pare	ent–Child Cor	iversations	
Memory Question	Children's "open-ended" memory questions, asking	Variable	Min	Max	Mean	SD
	the parent to provide information	Parent Elaborations	7.5	119	38.90	20.73
Information-Sec	eking During a Task with an Ambiguous Goal	Child Memory Elaborations	2	84	24.52	14.76
Children took part i	n an Object Momenty Task	Child Memory Questions	0	3	.60	.78
(OBJ; Baker-Ward	et al., 1984) in which they were	Information-Se	eking Duri	ng an Ambigı	ious Goal	
asked to "work to re	emember" as many objects as	Variable	Min	Max	Mean	SD
how to do so, during resulted in a variety	g a 2-minute study period. This of behaviors – as the best way	Frequency of Information- Seeking	0	3	0.22	0.55
to achieve this goal	ion-seeking behaviors were coded and described below:	Latency to Seek	5	126	109.76	33.30
Indicator	Examples	Note: Latency to Seek Informati	on is rever	se scored, in t	hat a smaller s	score
Information-Seeking Behaviors	The number of times a child asked the research	indicates it took the child fewer metacognitive monitoring.	seconds to	seek informa	tion, exhibitin	ng greater
Latency to Seek	The length of time in seconds it takes to seek	De	liberate Str	rategy Use		
Information (sec)	information for the first time	Variable	Min	Max	Mean	SD
	Deliberate Memory Skills	Fall Spontaneous Sorting	23	.78	21	.11
• Children took part i	n the Free Recall Task with Organizational Training	Fall Generalization Sorting	23	1	.03	.47
(Moely et al., 1992) (from 4 categories:	; children were asked to remember 16 line drawings	Winter Spontaneous Sorting	23	1	.05	.50
(measuring spontan	eous sorting), followed by a training trial in which they	Spring Spontaneous Sorting	23	1	.10	.53
were instructed in c	ategorical organization, and finishing with a	Correlations	Between	Predictor Va	ariables	
advantage of this st	rategic instruction.		1.	2.	3.	4.
• The Adjusted Ratio	of Clustering (ARC) measure (Roenker, Thompson, &	1. Parents' Elaborations	-			
Brown, 1971) was u measure ranges from	n sed to characterize children's sorting during study; the n -1 (below chance) to 0 (chance) to 1 (perfect	2. Children's Manager Questions	./3	- 2 /**		
categorical sorting a	and clustering).	4. Info Socking From on ODL	.43	.54	- 24+	
Category	Line Drawings	4. mio-Seeking Freq. on OBJ	.13	.05	.24	-

8		8)			_			
Category	Line Drawings							
Clothing	Pants	Shorts	Shirt	Socks				
Plants	Flower	Cactus	Tree	Grass	ľ			
Furniture	Couch	Table	Bed	Chair				
Toys	Block	Teddy bear	Үо-уо	Ball				

Children's memory questions, but not their elaborations, were significantly associated with their latency to seek information and marginally associated with their total frequency of information-seeking behaviors when presented with an ambiguous goal. +p<.10, *p<.05, **p<.01

-.27*

. Info-Seeking Latency on OBJ

-.39**

-.13

-.84**

Note: Although all pathways were tested, only significant and marginal effects are illustrated above.

- Children's total frequency of information-seeking behaviors and their latency to seek information when presented with an ambiguous goal predicted their spontaneous, strategic sorting skills in the fall ($\beta = .34$, p < .001; $\beta = -.31$, p = .003) and winter ($\beta = .34, p < .001; \beta = -.31, p = .004$) of kindergarten.
- However, it was children's information-seeking behaviors during parent-child reminiscing conversations that predicted children's ability to successfully *take up* and *apply* strategic organizational training when taught by a research assistant ($\beta = .26, p = .03$).
- Neither parents' nor children's elaborations predicted children's deliberate strategy use.

DISCUSSION AND FUTURE DIRECTIONS

- These findings address a gap in the literature surrounding the assessment of young children's emergent metacognitive monitoring skills. Children who *quickly* and *frequently* sought information when presented with an ambiguous goal evidenced greater spontaneous strategy use on a deliberate memory task. Indeed, previous research has suggested that metacognitive skills may serve as a precursor to effective strategy use (Schlagmüller & Schneider, 2002) and may be linked to children's ability to identify the need for and appropriately select a strategy (Schneider, 1999).
- Findings highlight the role of children's information-seeking behaviors during reminiscing conversations as potential indicators of metacognitive monitoring – or acknowledging what one does not know and subsequently seeking out this information. In the current study, children who frequently posed open-ended questions to their parents were quicker to autonomously seek out information from a research assistant when presented with an ambiguous goal than their peers who posed fewer memory questions when reminiscing.
- Given that there are almost no short-term longitudinal studies examining children's emergent metacognitive skills (Roebers, 2017), future work would benefit from examining the role of reminiscing conversations on longitudinal change in children's metacognition throughout the academic year – as early metacognitive monitoring is thought to set the stage for more advanced study techniques into adolescence (Weil et al., 2013).

ACKNOWLEDGEMENTS

Thank you to the children, families, teachers, and research assistants who make this work possible. The research reported here was supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R305A170637 to the University of North Carolina at Greensboro. The opinions expressed are those of the authors and do not represent views of the Institute or the U.S. Department of Education.

+p<.10, *p<.05, **p<.01

REENSBORO

"How Did You Study the Passage?": Exploring Linkages Between Basic Cognitive, Academic, and Study Skills Amber E. Westover¹, Shelby L. Finch¹, Sydney A. Revell¹, Peter A. Ornstein², and Jennifer L. Coffman¹

THE UNIVERSITY f NORTH CAROLINA t CHAPEL HILL

University of North Carolina at Greensboro¹ and University of North Carolina at Chapel Hill²

INTRODUCTION

- The ability to study and retain information from content-relevant text passages is a critical skill for academic success. Past research has focused primarily on the strategic study behaviors of university students (Crede & Kuncel, 2008). Few studies have examined these skills in elementary school students.
- Little is known about how students acquire these skills and the factors that are associated with their effective use. Coffman et al. (2019) found associations between children's early organizational memory strategies and later strategic study behaviors. Thus, study skills may be related to general cognitive skills.
- Longitudinal studies have linked both domain-general and domain-specific skills to academic performance and strategy selection (e.g., Lemaire & Lecacheur, 2011; Suggate et al., 2018).
- Nevertheless, associations between academic skills, basic cognitive abilities, and strategic studying have not been examined in elementary students.

AIMS OF THE STUDY

- To characterize the spontaneous study behaviors used by students and describe how strategically they employed each behavior.
- To examine links between kindergarten children's basic cognitive abilities, academic skills, and performance on a study skills task in third grade (study strategies and recall performance).

METHODS

- Data for this study were drawn from a longitudinal study of children's memory and cognitive skills across the early elementary school years.
- Child- and school-level measures were collected from kindergarten entry through the beginning of the third-grade year.
- Kindergarten measures were obtained during in-person assessments. However, due to the COVID-19 pandemic, the study skills task was conducted via Zoom.

Mixed

Unreported

PARTICIPANTS

- 102 second- and third- African American grade students
- 43 male, 59 female
- Average age during study skills task: 8.43 years (range: 7.57 -9.46)
- Asian American/ Pacific Islander European American

MEASURES

Study Skills (adapted from Brown & Smiley 1977; 1978)

- Children were given 4 minutes to work to remember a non-fiction passage. They were provided a piece of paper, pencil, and highlighter but given no explicit study instructions.
- Recall for each fact from the passage was scored 0 (no recall), 1 (partial recall), or 2 (full recall). Recall scores reflect the sum of scores across all facts (51 in total).
- For each of the study behaviors defined below, strategy use was scored from 0 (not present) to 3 (strategic and systematic focus on key information). A composite score was created using the average of the observed strategies.

Definition
Degree to which students strategically underlined key facts
Degree to which students strategically highlighted key facts
Degree to which students strategically took notes on key facts or summarized important details in their own words
Degree to which students reviewed notes in a strategic manner
Degree to which students drew an organized picture of key facts
Degree to which students rehearsed or reread specific facts aloud
Degree to which students strategically self-tested, focusing on key facts
Degree to which students strategically and systematically reread (e.g., in the service of taking notes)

Dimensional Change Card Sort (DCCS; Gerson et al., 2013)

Children were asked to match a set bivalent cards to two target pictures. First, they sorted by one dimension (e.g., shape) and then according to the other (e.g., color). This task assesses cognitive flexibility.

Woodcock Johnson Reading Fluency (Woodcock et al., 2001)

Children were given three minutes to read a series of sentences and indicate whether each statement was true or false. This task assesses children's reading fluency.

Strategy Score by Study Behavior

Study Behavior	Mean <i>(SD)</i>
Underlining	1.85 (0.77)
Highlighting	1.70 (0.70)
Taking Notes	1.83 (0.75)
Reviewing Notes	1.00 (0.00)
Drawing a Picture	1.57 (0.79)
Verbalization	1.82 (0.81)
Self-Testing	1.50 (0.58)
Rereading	2.49 (0.72)

Number of Behaviors Used

- Students used a range of study strategies. Rereading (used by 89.36% of students) and highlighting (48.94%) were the most common and reviewing notes (1.06%) was the least. Children used a mean of 2.35 different strategies (range = 0 - 5).
- The overall composite of strategic behaviors ranged from 0 to 3 with a mean of 2.00 and standard deviation of 0.66.
- Recall ranged from 0 to 30, with an average score of 12.08 (SD = 7.13).

Basic Cognitive and Academic Skills

	Ν	Min	Max	Mean	SD
Reading Fluency	73	0	46	6.37	9.58
Cognitive Flexibility	94	0.13	7.68	4.21	2.30

During kindergarten, children varied in both their reading fluency and cognitive flexibility. Raw scores were used for reading fluency and a computed score of reaction time and accuracy for cognitive flexibility.

RESULTS

Linking Basic Cognitive and Academic Predictors to Study Skills

- Children's kindergarten skills (cognitive flexibility and reading fluency) were correlated with both their composite strategy behaviors and recall scores (rs=.25 to .39; ps<.05).
- Additionally, strategy use and recall were significantly correlated (r=.36, p<.01).

Regression Predicting Study Skills Using Kindergarten Abilities

	В	SE B	β	R ²
Kindergarten Reading Fluency	.01	.01	.21	.04
Kindergarten Cognitive Flexibility	.11	.03	.37**	.14

Regression Predicting Recall Using Kindergarten Abilities

	В	SE B	β	R^2
Kindergarten Reading Fluency	.28	.08	.38**	.14
Kindergarten Cognitive Flexibility	.48	.35	.15	.02
				* <i>p</i> <.05 ** <i>p</i> <.01

- Children's kindergarten skills were correlated with both their composite strategy behaviors and recall scores. Additionally, strategy use and recall were significantly correlated.
- Regression results revealed that strategy use was predicted by cognitive flexibility but not reading fluency. Notably, the opposite findings occurred for recall performance; recall was predicted by reading fluency but not cognitive flexibility.

DISCUSSION AND FUTURE DIRECTIONS

- The findings from this study provide evidence that elementary school students are capable of employing study strategies spontaneously while working to remember a non-fiction passage. Children varied both in terms of the behaviors that they used and how strategically they applied each skill.
- Notably, their strategic studying was significantly correlated with their recall performance.
- Students with higher cognitive flexibility in kindergarten were more strategic in their study attempts, whereas students with stronger reading skills recalled more facts from the passage. This suggests that early cognitive and academic competencies may differentially contribute to later, more advanced study skills.
- Future work can investigate how elementary students study other types of passages. Additionally, little is known about how concurrent academic and cognitive skills contribute to study skills. There may be other important cognitive and academic skills that support strategic efforts. Finally, additional research is necessary to understand how children develop these study skills during the elementary school years.

ACKNOWLEDGEMENTS

Thank you to the children, families, teachers, and research assistants who make this work possible. The research reported here was supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R305A170637 to the University of North Carolina at Greensboro. The opinions expressed are those of the authors and do not represent views of the Institute or the U.S. Department of Education.

p* <.05 *p* <.01

Parental Math Attitudes and Expectations Predict Developmental Change in Children's Mathematical Skills in Elementary School

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

INTRODUCTION

- The home mathematics environment encompasses a wide range of factors such as parents' personal attitudes and affective responses to mathematics, activity choices, and the resources available to support mathematical learning (Elliot et al., 2021).
- Multiple studies have evidenced positive associations between home mathematics learning practices – such as the frequency of parental scaffolding and access to educational materials – and children's mathematical performance (Sénéchal et al., 2017).
- However, recent evidence has suggested that this association is more nuanced than previously understood (Skwarchuk et al., 2022) and that caregivers' personal attitudes towards mathematics may play a more prominent role in children's development than previously understood, as they may contribute to the quality of formal numeracy activities taking place in the home (del Río et al., 2017).
- For this reason, further investigation is required to understand the unique roles that parents' mathematical attitudes, expectations, and home numeracy practices play in children's mathematical skills during early elementary school.

AIMS OF THE STUDY

- Describe children's development of mathematical strategies across kindergarten and first grade.
- Examine associations between parental math attitudes and home numeracy practices.
- Predict children's change over time in math problem solving skills from these parent-level predictors.

METHODS

- Data for this study were drawn from an ongoing longitudinal study of the memory and cognitive skills of children as they transition into elementary school.
- Child-, home- and school-level measures were collected across fall, winter, and spring of the kindergarten and first-grade years, totaling six timepoints.
- Continuing data collection will allow for multi-level assessments through the beginning of the second grade.

PARTICIPANTS

Participants were drawn from 3 schools and included 67 kindergarteners:

MEAS	AC	CROSS TAS	SK RESU	U LTS			
Formal Home Numeracy Pract	ces (Skwarchuk et al., 2014)	Characterizing Num	eracy Practic	es, Attitud	les, and F	Expectatio	ns
• In the fall of kindergarten, primary car	egivers reported the frequency of	Par	ent-Level Predi	ctor Variab	les		
 practicing specific numeracy activities Possible responses ranged from <i>rarely</i> 	in the home with their children (0) to multiple times daily (4)	Variable	Ν	Min	Max	Mean	SD
 Responses were averaged to create a c 	omposite measure representing the	Formal Numeracy Practices		.42	3.75	2.09	.88
home numeracy environment.		Parents' Mathematical Attitue	des .	.50	4.00	2.69	1.01
Example indicators on the Questionnaire (How often do you?)		Parents' Numeracy Expectation	ons 1	.00	4.00	3.05	.84
help learn simple sums? help child w	eigh, measure, or compare quantities?	All composite scores were created by averaging across all indicators within each					
ask about quantities? help child recite numbers in order?		questionnaire (e.g., the mathe	ematical attitude	es composit	te is an ave	erage of par	rents'
sing counting songs? teach child to recognize printed numbers?		 responses across those 4 indi Parents' math attitudes and n 	icators).	tations wer	e significa	ntly associa	ated with
play board games or cards? sort and clas	sify by color, shape, and size?	• Parents' math attitudes and numeracy expectations were significantly associated with one another ($r = .30, p < .05$). Numeracy practices were only marginally associated					
Parents' Mathematical Attitudes (Skwarchuk e	with parents' numeracy expe	ctations (r = .23	3, <i>p</i> < .10). ing Childi	ren's Dev	elopment		
• In the fall of kindergerten to assess no	ranta' parsanal attitudas towards		Scaling Outcom	e Variables	5	-	
 In the fail of kindergarten, to assess particulation mathematics/numeracy, primary carege strongly disagree to 4 = strongly agree 	ivers rated their agreement $(0 = e)$ on 4 statements listed below.	Variable	Lowest Possible Each Time	e Score for point	Highe: E	st Possible Each Timep	Score for oint
• To assess caregivers' knowledge of ap	propriate numeracy expectations for	Accuracy	0			10	
<i>unimportant</i> to 5 = <i>extremely important</i>	<i>nt</i>) that children achieve 3 number of	Strategy Effectiveness	0%			100%	
numeracy benchmarks before they sta	t first grade.	Conditio	onal Hierarchical I	Linear Model	Results		
• Responses were averaged to create a c parents' mathematics attitudes and nur	omposite measure representing the neracy expectations, respectively.	Final Estimation of Fixed Effects	Coefficient	SE	t	df	p
Numeracy Attitudes	Academic Expectations (Numeracy)	Childre	en's Math Problem	n-Solving Ac	curacy		
Rate your agreement with the following	How important is it for your child	Intercept	6.28	0.65	9.69	65	<.001
statements:	to	Time	1.39	0.20	7.00	307	<.001
"I was good at math when I was in school."	Count to 100	Math Attitudes	0.47*	0.23	2.10	65	0.04
"I enjoyed math when I was in school."	• Read printed numbers up to 100	Math Attitudes * Time	-0.15*	0.07	-2.16	307	0.03
"The career path I've chosen in math-related."	• Know simple sums (e.g., $2 + 2$)	Intercept	5.71	0.86	6.67	65	<.001
"I find math activities enjoyable."		Time	1.51	0.26	5.70	307	<.001
Children's Mathematical Problem S	olving (Siegler & Jenkins, 1989)	Numeracy Expectations	0.61*	0.27	2.24	65	0.03
• Children solved ten simple addition p	oblems that were coded for strategy	Numeracy Expectations * Time	-0.17*	0.08	-2.03	307	0.04
use across all 6 timepoints.	1.111 1	Children's M	lath Problem-Solvi	ing Strategy l	Effectivenes	S	
• Two indicators of math problem-solving skills were assessed:		Intercept	.64	.07	8.74	65	<.001
2. Strategy effectiveness (i.e., the per	entage of the 10 problems on which	Time	.12	.03	3.75	307	<.001
children employed a strategy and it	resulted in the correct answer.)	Numeracy Expectations	.05*	.02	2.23	65	0.02
		Numeracy Expectations * Time	02 ⁺	.01	-1.71	307	0.08

MEAS	AC	CROSS TAS	SK RESU	U LTS			
Formal Home Numeracy Pract	ces (Skwarchuk et al., 2014)	Characterizing Num	eracy Practic	es, Attitud	les, and F	Expectatio	ns
• In the fall of kindergarten, primary car	egivers reported the frequency of	Par	ent-Level Predi	ctor Variab	les		
 practicing specific numeracy activities Possible responses ranged from <i>rarely</i> 	in the home with their children (0) to multiple times daily (4)	Variable	Ν	Min	Max	Mean	SD
 Responses were averaged to create a c 	omposite measure representing the	Formal Numeracy Practices		.42	3.75	2.09	.88
home numeracy environment.		Parents' Mathematical Attitue	des .	.50	4.00	2.69	1.01
Example indicators on the Questionnaire (How often do you?)		Parents' Numeracy Expectation	ons 1	.00	4.00	3.05	.84
help learn simple sums? help child w	eigh, measure, or compare quantities?	All composite scores were created by averaging across all indicators within each					
ask about quantities? help child recite numbers in order?		questionnaire (e.g., the mathe	ematical attitude	es composit	te is an ave	erage of par	rents'
sing counting songs? teach child to recognize printed numbers?		 responses across those 4 indi Parents' math attitudes and n 	icators).	tations wer	e significa	ntly associa	ated with
play board games or cards? sort and clas	sify by color, shape, and size?	• Parents' math attitudes and numeracy expectations were significantly associated with one another ($r = .30, p < .05$). Numeracy practices were only marginally associated					
Parents' Mathematical Attitudes (Skwarchuk e	with parents' numeracy expe	ctations (r = .23	3, <i>p</i> < .10). ing Childi	ren's Dev	elopment		
• In the fall of kindergerten to assess no	ranta' parsanal attitudas towards		Scaling Outcom	e Variables	5	-	
 In the fail of kindergarten, to assess particulation mathematics/numeracy, primary carege strongly disagree to 4 = strongly agree 	ivers rated their agreement $(0 = e)$ on 4 statements listed below.	Variable	Lowest Possible Each Time	e Score for point	Highe: E	st Possible Each Timep	Score for oint
• To assess caregivers' knowledge of ap	propriate numeracy expectations for	Accuracy	0			10	
<i>unimportant</i> to 5 = <i>extremely important</i>	<i>nt</i>) that children achieve 3 number of	Strategy Effectiveness	0%			100%	
numeracy benchmarks before they sta	t first grade.	Conditio	onal Hierarchical I	Linear Model	Results		
• Responses were averaged to create a c parents' mathematics attitudes and nur	omposite measure representing the neracy expectations, respectively.	Final Estimation of Fixed Effects	<i>Coefficient</i>	SE	t	df	p
Numeracy Attitudes	Academic Expectations (Numeracy)	Childre	en's Math Problem	n-Solving Ac	curacy		
Rate your agreement with the following	How important is it for your child	Intercept	6.28	0.65	9.69	65	<.001
statements:	to	Time	1.39	0.20	7.00	307	<.001
"I was good at math when I was in school."	Count to 100	Math Attitudes	0.47*	0.23	2.10	65	0.04
"I enjoyed math when I was in school."	• Read printed numbers up to 100	Math Attitudes * Time	-0.15*	0.07	-2.16	307	0.03
"The career path I've chosen in math-related."	• Know simple sums (e.g., $2 + 2$)	Intercept	5.71	0.86	6.67	65	<.001
"I find math activities enjoyable."		Time	1.51	0.26	5.70	307	<.001
Children's Mathematical Problem S	olving (Siegler & Jenkins, 1989)	Numeracy Expectations	0.61*	0.27	2.24	65	0.03
• Children solved ten simple addition p	oblems that were coded for strategy	Numeracy Expectations * Time	-0.17*	0.08	-2.03	307	0.04
use across all 6 timepoints.	1.111 1	Children's M	lath Problem-Solvi	ing Strategy l	Effectivenes	S	
• Two indicators of math problem-solving skills were assessed:		Intercept	.64	.07	8.74	65	<.001
2. Strategy effectiveness (i.e., the per	entage of the 10 problems on which	Time	.12	.03	3.75	307	<.001
children employed a strategy and it	resulted in the correct answer.)	Numeracy Expectations	.05*	.02	2.23	65	0.02
		Numeracy Expectations * Time	02 ⁺	.01	-1.71	307	0.08

Strategy	Description
1. Sum	Counting numbers from the problem starting from 1
2. Shortcut Sum	Count two numbers together starting with one
3. Max	Counting on from the smaller addend
4. Min	Counting on from the larger addend
5. Finger Recognition	Shows the number on fingers with out counting
6. Decomposition	Relied on information from an easier problem to solve

Jennifer L. Coffman¹, Olivia K. Cook¹, Amber E. Westover¹, Keadija C. Wiley¹, Lianny Araujo-Martinez¹, Kaitlyn L. Tran¹, & Peter A. Ornstein² University of North Carolina at Greensboro¹, University of North Carolina at Chapel Hill²

> oue: Although all six possible models were run, only models with significant effects are shown above. For all models, the intercept is specified to first grade entry (Time 4).

- $\gamma_{10} = .61, p = .03).$
- .17, p = .04).
- numeracy expectations ($\gamma_{10} = .05, p = .02$).
- Parents' home numeracy practices did not account for differences in children's math problem-solving accuracy or strategy effectiveness.

DISCUSSION AND FUTURE DIRECTIONS

- Contrary to previous research, parents' home numeracy practices did not predict children's math problem practices (LeFevre et al., 2002).
- next step for researchers (Hudson et al., 2018).

ACKNOWLEDGEMENTS

Thank you to the children, families, teachers, and research assistants who make this work possible. The research reported here was supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R305A170637 to the University of North Carolina at Greensboro. The opinions expressed are those of the authors and do not represent views of the Institute or the U.S. Department of Education.

higher math problem solving accuracy from the fall of kindergarten through first grade entry than their peers of parents with more negative attitudes towards math and lower numeracy expectations ($\gamma_{10} = .47, p = .04$;

However, children with parents who had negative mathematical attitudes and lower numeracy expectations developed *more rapidly* over the course of the kindergarten and first grade year ($\gamma_{11} = -.15$, p = .03; $\gamma_{11} = -.15$

Similarly, children of parents with high numeracy expectations evidenced greater strategy effectiveness scores from the fall of kindergarten through beginning of first grade than their peers of parents with lower

solving skills at any timepoint in the current study. Rather, parents' math attitudes and numeracy expectations were associated with differences in children's skills throughout the first year of elementary school and their performance at first-grade entry. Future work would benefit from examining if the positive association between parents' attitudes and expectations and children's mathematics performance is mediated by home numeracy

Additionally, children of parents with more negative attitudes and lower numeracy expectations developed accuracy scores *more rapidly* over the course of kindergarten and first grade, highlighting the importance of examining the role of the schooling experience for specific subgroups of children. The examination of the interplay between home- and school-level processes on children's math problem-solving development is a clear

The Delayed Role of Kindergarten: Linkages Between Teachers' Cognitive Processing Language and Children's Memory

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

INTRODUCTION

- The early elementary school years mark a significant period of growth in children's deliberate memory skills (see Ornstein et al., 2008, Sodian & Schneider, 1999). Longitudinal studies have provided evidence that meaning-based sorting (grouping semantically-related items) increases between kindergarten and second grade (Kron-Sperl et al., 2008).
- Past experimental and longitudinal studies have linked teachers' use of metacognitively-rich instructional language (termed Cognitive Processing Language or CPL) to children's growing memory skills (see Coffman & Cook, 2021, for a review).
- Children exposed to higher levels of CPL in first grade engage in more strategic sorting at the end of the school year, with differences persisting through fourth grade (Coffman et al., 2019). However, little is known about these associations in kindergarten.
- Kindergarteners are less strategic than first-grade students and less able to take up strategy training (Coffman et al., 2011). Thus, associations between exposure to high levels of CPL in kindergarten and strategic behaviors may not be evident until later grades.

AIMS OF THE STUDY

In this examination of growth in children's deliberate memory skills as a function of their kindergarten classroom experiences, we aim to:

- 1. Explore developmental change in children's strategic sorting across the kindergarten and first-grade school years.
- 2. Examine whether kindergarten teachers' use of higher compared to lower levels of Cognitive Processing Language predicts differences in developmental trajectories.

METHODS

- Data for this study were drawn from the first cohort of an ongoing longitudinal study of children's memory and cognitive skills as they transition into elementary school.
- Child- and school-level measures were collected across the kindergarten and first grade years.

PARTICIPANTS

Children

- 76 children (41 girls, 35 boys)
- Age at K Fall Timepoint: 5.72 years (4.93–6.43)
- African American
- Asian American Pacific Islander
- European American
- Mixed
- Unreported

- Teachers
- 10 teachers (all female) Age: 36.10 years (24–53)
- Experience: 13.40 years (2–30)
- Degree: 5 bachelor's, 5
- master's
- African American
- Asian American
- European American

MEASURES

Free Recall with Training: FRT (Moley et al., 1992)

- Children were asked to remember 16 drawings (from 4 categories).
- During fall of kindergarten and first grade, children completed a *baseline* trial (measuring spontaneous sorting), a *training* trial where they received instructions on categorical organization, and a generalization trial (assessing their ability to utilize this strategic instruction with new materials).
- At the winter and spring timepoints, children completed a single trial with new drawings from 4 new categories.
- As children worked to remember, their strategic sorting was measured using an Adjusted Ratio of Clustering (ARC) score (Roenker et al., 1971). Sorting ARC scores range from -1 (below chance) to 0 (chance sorting) to +1 (perfect categorical sorting).

Example Set

Category Line Drawings				
Clothing	Pants	Shorts	Shirt	Socks
Plants	Flower	Cactus	Tree	Grass
Furniture	Couch	Table	Bed	Chair
Toys	Blocks	Teddy Bear	Үо-уо	Ball

Cognitive Processing Language: CPL (Coffman et al., 2008)

- A cumulative total of 120 minutes of whole-group language arts and mathematics instruction was videotaped and coded for each classroom
- Observations were collected over several months and required an average of 12.8 lessons (range = 10-16). Lessons ranged from 3 to 17.5 minutes and lasted an average of 9.78 minutes.
- Teachers' language was coded every 30 seconds using a coding scheme characterized by 26 codes from four main categories:
- (1) *Instructional Activities* (giving instructional information)
- (2) Cognitive Structuring Activities (encouraging deeper processing)
- (3) *Memory Requests* (asking to recall or remember for the future)
- (4) *Metacognitive Information* (asking/giving strategic information)
- A composite index of Cognitive Processing Language (CPL) was created based on a subset of codes:

Code	Definition
Strategy Suggestions	Recommending that a child adopt a procedure for remembering or processing information
Metacognitive Questions	Requesting that a child provide a potential strategy, a utilized strategy, or rationale for a utilized strategy
Co-occurrence of Memory Requests and Instructional Activities	Requesting information from children's memory while also presenting instructional information
Co-occurrence of Memory Requests and Cognitive Structuring Activities	Requesting information from children's memory while simultaneously facilitating encoding and processing by focusing attention or organizing materials
Co-occurrence of Memory Requests and Metacognitive Information	Requesting information from children's memory while providing or soliciting metacognitive information

Amber E. Westover¹, Olivia K. Cook¹, Sydney A. Revell¹, Kaitlyn L. Tran¹, Lianny Araujo-Martinez¹, Catherine N. Ricci¹, Peter A. Ornstein², Jennifer L University of North Carolina at Greensboro¹ and University of North Carolina at Chapel Hill²

DESCRIPTIVE STATISTICS			
Sorting ARC Scores Across Kindergarten and First Grade			
Time Point	Ν	Mean	SD
Kindergarten Fall Baseline	76	-0.21	0.12
Kindergarten Fall Generalization	72	0.01	0.46
Kindergarten Winter	73	0.08	0.53
Kindergarten Spring	73	0.10	0.52
First Grade Fall Baseline	65	0.30	0.59
First Grade Fall Generalization	65	0.47	0.60
First Grade Spring	64	0.59	0.57
First Grade Winter	64	0.72	0.50

Children increased in their strategic sorting across the kindergarten and first-grade school years. At the beginning of kindergarten, children sorted at below chance levels (most students did not perform any sorting); at the end of the school year, they sorted slightly above chance. By the end of first grade, children sorted significantly above chance (approximately 14/16 cards).

Classroom-Level Factors

Taxonomy Codes	Overall	Low CPL	High CPL	
	Mean <i>(Range)</i>	Mean <i>(Range)</i>	Mean <i>(Range)</i>	
Strategy	14.83%	12.42%	17.25%	
Suggestions	(2.50%–27.50%)	(2.50%–22.08%)	(10.83%–27.50%)	
Metacognitive	11.17%	8.00%	14.33%	
Questions	(5.00%–21.67%)	(5.00%–12.08%)	(6.67%–21.67%)	
Co-occurrence of Memory Requests with:				
Instructional Activities	55.46%	51.58%	59.33%	
	(47.50%–65.83%)	(47.50%–54.58%)	(50.42%-65.83%)	
Cognitive Structuring	30.96%	25.42%	36.50%	
Activities	(21.67%-42.92%)	(21.67%–33.33%)	(23.75%–42.92%)	
Metacognitive	15.00%	12.00%	18.00%	
Information	(6.67%–22.08%)	(6.67%–16.67%)	(12.08%–22.08%)	

Standardized scores were generated for each component of CPL.

- Each of the resulting T scores was averaged to create a composite index of CPL. The mean T score was 50 (SD = 7.56) with a range of 38.44 to 61.15.
- Teachers were divided into high and low groups based on a median split for comparison. The table displayed above shows the percentage of intervals in which teachers used each type of language (mean scores and ranges are displayed).

Fixed Effects	Coefficient	SE	4	р	95% Confidence Interval	
		SE	l		Lower	Upper
Intercept	0.53	0.09	6.04	< 0.01	0.36	0.71
Time	0.11	0.01	8.56	< 0.01	0.08	0.13
Teachers' CPL	0.34	0.12	2.83	0.01	0.10	0.57
Teachers' CPL*Time	0.04	0.02	2.49	0.01	0.01	0.08
			1 1 1.1	1 1 6 1 6		

Note: Intercept is specified to the end of first grade. Intercepts and slopes did vary randomly, although only fixed effects are presented here.

DISCUSSION AND FUTURE DIRECTIONS

- This is the first investigation to examine the role of kindergarten teachers' use of CPL in children's growth in deliberate memory skills. At the end of first grade, children's use of strategic sorting differed as a function of their exposure to high, as compared to low levels of CPL in kindergarten. Notably, children exposed to higher levels of CPL also evidenced a more rapid rate of change over two academic years.
- Novel findings from this study suggest that experiences in kindergarten may continue to play a role in children's development of strategic memory even after they transition to first grade. Early exposure to metacognitively-rich instructional language may therefore prepare students to take advantage of instruction in subsequent grades.
- Building on these findings, future studies would benefit from examining the influence of exposure to sustained, high levels of CPL across multiple school years. Specifically, researchers should explore whether receiving metacognitively-rich instructional language two years in a row would enhance deliberate memory outcomes. Replicating this study with a larger, more diverse sample would test the generalizability of these findings and allow further analyses. Indeed, it remains unknown how much and how often exposure to CPL is optimal for children's memory development.

ACKNOWLEDGEMENTS

Thank you to the children, families, teachers, and research assistants who make this work possible. The research reported here was supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R305A170637 to the University of North Carolina at Greensboro. The opinions expressed are those of the authors and do not represent views of the Institute or the U.S. Department of Education.

Skills	C12
Coffman ¹	South to a

es •	Children taught by the two groups of teachers displayed similar initial sorting scores (low- $CPL = -0.23$, high- $CPL = -0.20$); however, the two groups diverged across the school years.
•	A series of hierarchical linear models was used to assess developmental trajectories in students' sorting behaviors as a function of their teachers' use of CPL.
• inter 1st Spring	Children who were taught by kindergarten teachers who used high levels of CPL had significantly higher sorting scores at the end of first grade (p =.006). Moreover, these students also developed strategic sorting skills <i>more rapidly</i> than their peers who were exposed to low levels of CPL (p =.013).